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Abstract: Multi-state models can be successfully used for describing complicated event history data, for example,
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process, counting the number of transitions between states and the risk sets for leaving each state with an inverse
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recommendations are presented. We also introduce a graphical local test for the Markov assumption. Several
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1 Introduction
Multi-state models ([1], [2], [3], [4]) are models for a
stochastic process, which at any time occupies one of
a set of discrete states. These models provide a rele-
vant modeling framework to deal with complex longi-
tudinal survival data in which individuals may experi-
ence more than one single event type. In such survival
studies, besides overall survival, more than one end-
point can be observed making the use of multi-state
models preferable over traditional survival methods
(e.g., the Cox model and the Kaplan-Meier estimator
of survival). A wide range of biomedical situations
have been modeled using multi-state methods, for ex-
ample, HIV infection and AIDS [5], liver cirrhosis [6],
breast cancer ([7]; [8]) and problems following heart
transplantation [3]. The states are usually based on
clinical symptoms (e.g., bleeding episodes), biolog-
ical markers (CD4 T-lymphocyte cell counts, serum
immunoglobulin levels), some scale of the disease
(e.g., stages of cancer or VIH infection) or a non-fatal
complication in the course of the illness (e.g., heart
transplantation). In cancer studies, besides death other
endpoints such as locoregional recurrence and distant
metastasis are often observed. A change of state is

called a transition, or an event. States can be transient
or absorbing. An absorbing state is a process to which
one will never leave once it enters.

The state structure of a multi-state model identi-
fies the states and also the transitions allowed between
states. This structure can be represented schematically
through diagrams with boxes representing the states
and arrows the possible transitions that can occur. The
complexity of a multi-state model greatly depends on
the number of states defined and also on the transitions
allowed between these states. The simplest form of a
multi-state model is the mortality model with states
“alive” and “dead” and a single transition allowed be-
tween them. This corresponds to the usual survival
analysis situation. Splitting the “alive” state from
the simple mortality model for survival data into two
transient states, we therefore obtain the simplest pro-
gressive three-state model. Another possible multi-
state model to describe the disease progression is the
illness-death model (also known as disability model;
Figure 1). In the irreversible version of this model,
individuals enter the study in State 1 (e.g., healthy or
alive without any disease) and subsequently move ei-
ther to the transient State 2 (“diseased”) or go directly

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.36 Gustavo Soutinho, Luis Meira-Machado

E-ISSN: 2224-2880 353 Volume 19, 2020



to the absorbing “dead” state. Individuals in State 2
will eventually move to the absorbing state without
any possibility of recovery. Many time-to-event data
sets from medical studies with multiple end points can
be reduced to this generic structure.

The multi-state process can be fully character-
ized through its transition intensities or by its tran-
sition probabilities. The transition intensities are the
instantaneous hazards for movement from one state
to another. These functions can used to obtain esti-
mates of the mean sojourn time in a given state and
to determine the number of individuals in different
states at a certain moment. Covariates may be in-
corporated in models through transition intensities to
explain differences among individuals in the course
of the illness. The transition probabilities represent
the conditional probabilities that can be used to ob-
tain predictions of the clinical prognosis of a patient
at a certain point in his/her recovery or illness process.
Various aspects of the model dynamics can be cap-
tured by the transition probabilities. The usual non-
parametric method to estimate the transition probabil-
ity matrix for non-homogeneous Markov processes is
the Aalen-Johansen estimator [9]. Recently, [10] pro-
pose a modification of the Aalen-Johansen estimator
in the illness-death model based on presmoothing. Al-
though both approaches may be used to consistently
estimate the occupation probabilities for non-Markov
processes ([11], [12], [13]), in general they provide
biased estimators for the transition probabilities if the
process is not Markovian [14].

Substitute estimators for the Aalen-Johansen esti-
mator for a non-Markov illness-death process without
recovery were introduced by [14]. They showed that
the alternative estimators may behave more efficiently
than the Aalen-Johansen when the Markov assump-
tion is strongly violated. Recently, [15] recovered the
approach by [14] and proposed a closely related non-
Markov estimator too. Both proposals ([14] and [15])
have the drawback of requiring the support of the cen-
soring distribution to contain the support of the life-
time distribution, otherwise they only report valid esti-
mators for truncated transition probabilities. To over-
come this problem this issue was recently revisited
by [16] and [17] who propose alternative estimators
based on subsampling (also known as landmarking)
which does not require the censoring support condi-
tion.

In this paper we revisit the topic of the nonpara-
metric estimation of the transition probabilities, by in-
troducing competing estimators in a multi-state sys-
tem that is not necessarily Markovian and that over-
comes the referred assumption on the censoring sup-
port. The new set of estimators are constructed using
the cumulative hazard of the total time given a first

time but where each observation has been weighted
using the information of the first duration. One of the
proposed estimator is equivalent to the estimators re-
cently proposed by [16]. To evaluate the performance
of all estimators, several simulation studies were con-
ducted under different data scenarios. Based on these
results recommendations are given as to which esti-
mators to use. We also revisit the problem of checking
the Markov assumption. However, unlike the usual
tests, we are interested in a more reliable test which
is used for a particular transition probability. To this
end, we introduce a graphical test for the Markov
assumption based on the discrepancies between the
new Markov-free estimators and the so-called Aalen-
Johansen estimator (Markovian).

1. Healthy 2. Diseased

3. Dead

1. Healthy 2. Diseased

3. Dead

Figure 1: Illness-death model.

The organization of the paper is as follows. The
estimators are introduced in Section 2. The finite sam-
ple performance of the proposed estimators for the
transition probabilities is investigated via simulations
in Section 3. In Section 4 we analyze data from a
colon cancer study with the proposed methods. Main
conclusions and specific recommendations are given
in Section 5.

2 Nonparametric Estimators

2.1 Notation

A multi-state model is a stochastic process (Xt, t ∈
T ) with a finite state space, where X(t) represents
the state occupied by the process at time t. In this
paper we consider the progressive illness-death model
depicted in Figure 1 and we assume that all subjects
are in State 1 at time t = 0. Individuals may pass
from the healthy state (State 1), to the disease state
(State 2) and then to the absorbing dead state (State 3).
Individuals are at risk of death in each transient state
(States 1 and 2). This means that one individual may
visit State 2 or go directly to State 3 without visiting
State 2.

Let Z denote the sojourn time in State 1, T the
total survival time of the process and ρ = I(Z < T )
the indicator of visiting State 2 at some time. For this
model the transitions allowed are 1 → 2, 1 → 3 and
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2 → 3. As usual with survival data, individuals are
generally followed over a certain period of time, pro-
viding right-censored observations. Let C denote the
right-censoring variable, assumed to be independent
of (Z, T ) (C⊥(Z, T )). Due to censoring, rather than
(Z, T ) we observe (Z̃, T̃ ,∆1,∆2) where Z̃ = Z ∧ C
and T̃ = T ∧ C are the censored versions of Z and
T , and ∆1 = I(Z ≤ C) and ∆ = I(T ≤ C) the
respective censoring indicators. Let{(

Z̃i, T̃i,∆1i,∆i, ρi

)
, 1 ≤ i ≤ n

}
be a random sample of the vector

(
Z̃, T̃ ,∆1,∆, ρ

)
.

For two states h, j and two time points s < t,
introduce the so-called transition probabilities

phj(s, t) = P (X(t) = j|X(s) = h).

In the illness-death model we have five dif-
ferent transition probabilities to estimate: p11(s, t),
p12(s, t), p13(s, t), p22(s, t) and p23(s, t). Using the
introduced notation, the transition probabilities can be
written as

p11(s, t) = P (Z > t | Z > s) ,

p12(s, t) = P (Z ≤ t, T > t | Z > s) ,

p13(s, t) = P (T ≤ t | Z > s) ,

p22(s, t) = P (Z ≤ t, T > t | Z ≤ s, T > s) ,

p23(s, t) = P (T ≤ t | Z ≤ s, T > s) .

from which it follows

p11(s, t) =
P (Z > t)

P (Z > s)
,

p12(s, t) =
P (s < Z ≤ t, T > t)

P (Z > s)
,

p13(s, t) =
P (Z > s, T ≤ t)

P (Z > s)
,

p22(s, t) =
P (Z ≤ s, T > t)

P (Z ≤ s, T > s)
,

p23(s, t) =
P (Z ≤ s, s < T ≤ t)
P (Z ≤ s, T > s)

.

Since we have two obvious relations p12(s, t) =
1− p11(s, t)− p13(s, t) and p23(s, t) = 1− p22(s, t)
this means that in practice we only need to estimate
three transition probabilities.

The inference in multi-state models is tradition-
ally performed under the Markov assumption, which
states that the relevant information for the future evo-
lution of the process is provided by its current state,

independently of the states previously visited and the
transition times among them. Under this assumption,
the transition probabilities can be estimated nonpara-
metrically using Aalen-Johansen estimators [9]. Their
estimation method extends the time-honored Kaplan-
Meier estimator to Markov chains. The Kaplan-Meier
estimator is the standard method to estimate the sur-
vival function from time-to-event data that are subject
to right censoring. It is a step function with jumps at
event times. The size of the steps depends on the num-
ber of events and the number of individuals at risk
at the corresponding time. Explicit formulae of the
Aalen-Johansen estimators (AJ) for the illness-death
model are available [18]. In the following sections we
introduce alternative non-Markov estimators for the
same target.

2.2 Kaplan-Meier weighted estimators

For a general non-Markov illness-death process with-
out recovery, [14] derived estimators for the transition
probabilities defined in terms of multivariate “Kaplan-
Meier integrals” with respect to the marginal distribu-
tion of the total time T . In particular, the estimators
of p12(s, t) and p22(s, t) were proposed as an alterna-
tive to the Aalen-Johansen estimators in non-Markov
situations. The transition probability p11(s, t) is de-
fined as the ratio of observed survival distributions
(and they can be estimated by the ordinary Kaplan-
Meier estimator of survival [19] of the sojourn time in
State 1, which we denote by Ŝ0). The denominator of
p12(s, t) can be estimated in the same way. The re-
maining quantities involve expectations of particular
transformations of the pair (Z, T ),E [ϕ (Z, T )] which
can not be estimated so simply

p̂ LIDA
12 (s, t) =

Ê(ϕs,t(Z, T ))

Ŝ0(s)
(1)

and

p̂ LIDA
22 (s, t) =

Ê(ϕ̃s,t(Z, T ))

Ê(ϕ̃s,s(Z, T ))
(2)

where ϕs,t(u, v) = I(s < u ≤ t, v > t) and
ϕ̃s,t(u, v) = I(u ≤ s, v > t) and Ê(ϕs,t(Z, T )) is
the “Kaplan-Meier integral”

Ê(ϕs,t(Z, T )) =
∑
i

Wiϕs,t(Z̃i, T̃i)

here Wi is the Kaplan-Meier weight attached to T̃i
when estimating the marginal distribution of T from
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the
(
T̃i,∆i

)
’s (equal to minus the jump at T̃i of the

Kaplan-Meier estimator of survival of the total time
Ŝ). See [14] for more details.

The methods proposed by [14] have the drawback
of requiring that the support of the censoring distribu-
tion contains the support of the lifetime distribution.
An assumption that is often not fulfilled in medical ap-
plications due to limitations in the patient’s following-
up. To avoid this potential problem, corrected estima-
tors were proposed by [16] for p12(s, t) and p22(s, t):

p̂cLIDA12 (s, t) =
Ŝ0(s)− Ŝ0(t)− Ê(γs,t(Z, T ))

Ŝ0(s)
(3)

and

p̂cLIDA22 (s, t) = 1− Ê(γ̃s,t(Z, T ))

Ŝ(t)− Ŝ0(s)
(4)

where γs,t(u, v) = I(u > s, v ≤ t) and γ̃s,t(u, v) =
I(u ≤ s, s < v ≤ t).

All these quantities can be estimated nonparamet-
rically using Kaplan-Meier weights.

2.3 Landmark Estimators

In this section we revisit the estimators proposed by
[16] who propose alternative nonparametric estima-
tors based on landmarking. The idea behind land-
mark estimation is to use the information given by the
state occupied by the individual at a landmark time
prior to time t to estimate the conditional probabilities
pij(s, t) (being s the landmark time). In practice, non-
parametric estimators for the transition probabilities
can be introduced by considering specific subsamples
or portions of the data. In our case, to estimate the
transition probabilities p1j(s, t), for j = 1, 2, 3, the
analysis can be restricted to the individuals observed
in State 1 at time s. As explained in [16], as long as C
is independent of Z, a subject in S1 =

{
i : Z̃i > s

}
is representative of those individuals for which Z ex-
ceeds s. On the other hand, for the subpopulation
Z̃ > s, the censoring time C is still independent of
the pair (Z, T ) and, therefore, Kaplan-Meier-based
estimation will be consistent. The same applies to
the analysis restricted to the individuals observed in
State 2 at time s, say S2 =

{
i : Z̃i ≤ s < T̃i

}
, which

serves to introduce landmark estimators for p2j(s, t),
j = 2, 3. Accordingly, the following landmark esti-
mators (LM) can be introduced,

p̂LM11 (s, t) = Ŝ
(s)
0 (t), (5)

p̂LM13 (s, t) = Ŝ(s)(t), (6)

where Ŝ(s)
0 is the Kaplan-Meier estimator of survival

of the sojourn time in State 1 computed in the sub-
sample S1; and Ŝ(s) is the Kaplan-Meier estimator of
survival of the total time computed in the same sub-
sample. The formal relation p12(s, t) = 1−p11(s, t)−
p13(s, t) can be used to estimate p12. Finally,

p̂LM23 (s, t) = Ŝ[s](t), (7)

where Ŝ[s] is the Kaplan-Meier estimator of survival
of the total time computed in the subsample S2.

It is worth mention that [17] also introduced an
estimator based on subsampling which they termed
as a landmark Aalen-Johansen estimator of the tran-
sition probabilities. The idea behind the proposed es-
timator is to use the Aalen-Johansen estimator of the
state occupation probabilities derived from those sub-
sets (consisting of subjects occupying a given state
at a particular time). Simulation studies published
in the paper by [17] show that the landmark Aalen-
Johansen estimator (LMAJ) and the landmark estima-
tor (LM) perform similarly. In fact, the two landmark
estimators (LM and LMAJ) of the transition probabili-
ties p11(s, t), p22(s, t) and p23(s, t) are equivalent.

As a weakness, the landmark estimators [16] and
[17] may provide large standard errors in estimation in
some circumstances. This may occur for small sam-
ple sizes and/or large proportion of censored data. In
such cases the estimators based on a landmark ap-
proach may result in a wiggly estimator with fewer
jump points. A valid approach that can be used to re-
duce the variability of these estimators is to consider a
modification of the landmark estimator based on pres-
moothing [20], [21].

2.4 Weighted Cumulative Hazard Estima-
tors

In this section we propose new estimators for the tran-
sition probabilities p11(s, t), p13(s, t) and p22(s, t).
The estimators are constructed using the cumulative
hazard of the total time given a first time but where
each observation has been weighted using the infor-
mation of the first duration. The proposed estimator
(WCH - weighted cumulative hazard) for the transi-
tion probability p11(s, t) is given by

p̂ WCH
11 (s, t) = P̂ (Z > t | Z > s) ,

=
∏
v∈R1

{1− Λ̂11(dv)}, (8)
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where Λ11(dv) is the cumulative conditional hazard
of Z given Z > s. Assuming that Z⊥C, Λ11(dv) can
be estimated by

Λ̂11(dv) =

∑n
i=1 I(Z̃i > s, Z̃i = v,∆1i = 1)∑n

i=1 I(Z̃i > s, Z̃i ≥ v)

and where R1 = {Z̃i : Z̃i ≤ t}.
Estimator (8) is equivalent to the estimator pro-

posed by [14], [16] and the so-called Aalen-Johansen
estimator [9].

Similar ideas can be used to obtain estimators for
p13(s, t) and p22(s, t). Note that p13(s, t) = P (T ≤
t | Z > s) = 1− P (T > t | Z > s). Then,

p̂
WCH

13 (s, t) = 1− P̂ (T > t | Z > s) ,

= 1−
∏

v∈R13

{1− Λ̂13(dv)}
∏

v∈R123

{1− Λ̂123(dv)}, (9)

where Λ13(dv) is the cumulative conditional hazard
of T given Z > s for those individuals going directly
into State 3 without visiting State 2; and Λ123(dv) is
the cumulative conditional hazard of T given Z > s
for those visiting State 2. Assuming that (Z, T )⊥C,
Λ13(dv) can be estimated by

Λ̂13(dv) =

∑n
i=1 I(Z̃i > s, Z̃i = T̃i, T̃i = v,∆2i = 1)∑n

i=1 I(Z̃i > s, T̃i ≥ v)

and where R13 = {T̃i : T̃i ≤ t}; whereas Λ123(dv)
can be estimated by

Λ̂123(dv) =

∑n
i=1 I(Z̃i > s, Z̃i < T̃i, T̃i = v,∆2i = 1)∑n

i=1 I(Z̃i > s, T̃i ≥ v)

and where R123 = {T̃i : T̃i ≤ t}.
Then, p12(s, t) can be estimated by p̂ WCH

12 (s, t) =
1− p̂ WCH

11 (s, t)− p̂ WCH
13 (s, t). Note that estimators of

p̂ WCH
1j (s, t) , j = 1, 2 are equivalent to the landmark

estimators proposed by [16].

Since p22(s, t) = P (Z<s,T>t)
P (Z<s,T>s) = P (T>t|Z<s)

P (T>s|Z<s) .
The key to estimating p22(s, t) is to estimate P (T >
u | Z < s) for u ∈ {s, t}. These quantities can be
estimated by

P̃ (T > u | Z < s) =
∏

v∈R23

{1− Λ̃23(dv)},(10)

where R23 = {T̃23i : T̃23i ≤ u − Z̃i, Z̃i < T̃i}; and
Λ23(dv) can be estimated by

Λ̃23(∆v) =

∑n
i=1 I(Z̃i ≤ s, Z̃i < T̃i, T̃23i = v,∆2i = 1)/Ĝ(Z̃i + v)∑n
i=1 I(Z̃i ≤ s, Z̃i < T̃i, T̃23i ≥ v,∆1i = 1)/Ĝ(Z̃i + v)

.

The resultant estimator is labeled as p̂WCH22 (s, t).
Since p22(s, t) = P (T > t|Z < s, T > s), an

alternative estimator is given by

p̃
WCH
22 (s, t) = P̃ (T > u | Z < s, T > s) =

∏
v∈R?

23

{1− Λ̃
?
23(dv)}, (11)

where R?
23 = {T̃i : T̃i ≤ t} and where Λ?

23(dv) can
be estimated by

Λ̃
?
23(∆v) =

∑n
i=1 I(Z̃i ≤ s, T̃i > s, T̃i = v,∆2i = 1)/Ĝ(v)∑n

i=1 I(Z̃i ≤ s, T̃i > s, T̃i ≥ v,∆1i = 1)/Ĝ(max(Z̃i, v))
.

The estimator p̃WCH22 (s, t) is equivalent to the land-
mark estimator p̂LM22 (s, t) proposed by [16].

The estimation of the variance is important for
inference purposes. Resampling techniques such as
the bootstrap provides here a practical solution to the
problem of variance estimation and inference. These
methods can be used to construct confidence limits
based on the percentile bootstrap.

3 Simulation Study

In this section we investigate the performance of
the proposed estimators through simulations. More
specifically, the estimators introduced in Section 2 are
considered. In particular we aim to compare the per-
formance of the Aalen-Johansen estimator which ben-
efits from the assumption of Markovianity on the un-
derlying stochastic process, with alternative estima-
tors which are free of the Markov condition. The sim-
ulation addresses also the question about the more ef-
ficient estimator in different scenarios.

To simulate the data in the irreversible illness-
death model, we separately consider the subjects pass-
ing through State 2 at some time (that is, those cases
with ρ = 1), and those who directly go to the absorb-
ing State 3 (ρ = 0). For the second subgroup of indi-
viduals (ρ = 0), times to death without illness are gen-
erated from the hazard function h13(t) = 0.024 × t.
For the first subgroup of individuals (ρ = 1), the
successive gap times (Z, T − Z) are simulated us-
ing two cause-specific hazard functions, h12 and h23
for each of the events (illness and death). The cause-
specific hazard for the intermediate event was defined
as h12(t) = 0.29

t+1 . For the individuals that experienced
the disease, times to death after the disease were gen-
erated using three different hazards:
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h123(t, t12) = 0.05

h223(t, t12) =
1

0.25(t12 + 1)0.8

h323(t, t12) = 0.04× log(t+ 1)

where t > 0, denotes the time since the start point,
and t12 is the transition time from State 1 to State 2.

The use of these three different hazard functions
provides three different scenarios. The first scenario
can be considered Markovian since the hazard of
death after the disease was set constant being indepen-
dent of t and t12. In the two remaining scenarios, the
hazard for death after disease depended on the these
times. The second scenario is semi-Markovian since
the process depend not only the current state, but also
how long it has been in the current state (time refers to
time since entering the intermediate state). The third
scenario is non-Markov since the hazard for death af-
ter disease depended on the time since entry in study.

An independent uniform censoring timeC is gen-
erated, according to models U [0, 40] and U [0, 30].
For the Markovian scenario, the first model, presents
19% of censoring on the first gap time Z, 40% cen-
soring on the total time T and 42% on the second
gap time T − Z, for those individuals who entered
in state 2. The second model changes these censor-
ing levels to 33%, 58% and about 36%, respectively.
The first model in the semi-Markovian scenario, re-
veals 23% of censoring for Z, 40% for T and 41%
for T − Z. Second model increases these censoring
levels to 36%, 49% and 41%, respectively. Finally, in
the non-Markovian scenario, the model U [0, 40] pro-
vides 25% of censoring on the first gap time, 43% on
the total time and 41% on the second gap time. Under
the model U [0, 30] censoring increases to 26%, 44%
and about 42%, respectively.

For each simulated scenario we consider several
different points (s, t) pairs, corresponding to combi-
nations of times 2, 4, 8 and 12 representing the differ-
ences between closer and distant times. Sample sizes
n = 100 and n = 250 are considered. In each simula-
tion, 1000 samples are generated. From these samples
we obtained the mean for all generated data sets. As
a measure of efficiency, we took the Mean Squared
Error (MSE) but we also computed the standard devi-
ations (SD) and the Bias.

Tables 1 (Markov scenario), 2 (semi-Markov sce-
nario) and 3 (non-Markov scenario) report the results
for transition probability p13(s, t). When one is confi-
dent of the Markov assumption, the Aalen-Johansen
is preferred over non-Markovian estimators since it

reports a smaller variance in estimation. This is in

agreeing with results reported in Table 1. Results re-
ported in the Tables 2 and 3 also reveal that the Aalen-
Johansen estimator (labeled as AJ) might still perform

reasonably well in situations where the process shows
only mild deviations from Markovianity. However,
when there is strong evidence that the process is not
Markov the use of a non-Markov estimator is prefer-
able due to their greater accuracy. This can be ob-
served from results reported in Tables 2 and 3.

All three simulation scenarios reveal that the per-
formance of the methods is poorer at the right tail.
This was expected because for larger values of s and t,
the censoring effects are stronger. The SD decreases
with an increase of the sample size and with the de-
crease of the censoring percentage, which was also
expected.

Results in Tables 1, 2 and 3 reveal a poor perfor-
mance of the original non-Markov estimators by [14],
referred to as LIDA estimators. The two methods al-
ternative non-Markov methods (the corrected LIDA,
labeled as cLIDA, and the Weighted Cumulative Haz-
ard method WCH) obtain in all settings a negligible
bias (decreasing as the sample size increases), while
the LIDA estimator show a systematic bias.

Tables 2 and 3 show that the Markov-free esti-
mators cLIDA and WCH may behave much more ef-
ficiently than the Aalen-Johansen. This is because of
the failure of the Markov assumption from which the
Aalen-Johansen estimator is built. This is more ev-
ident in the semi-Markov scenario, with higher lag
times t − s. In these cases, the Aalen-Johansen show
a systematic bias which does not decrease with an in-
creasing sample size. In these cases the application
of the Aalen-Johansen method is not recommended
here, due to possible biases. The poor behavior of the
Aalen-Johansen estimator can also be seen in Figure
2, in which we show the boxplots of the estimates of
the transition probabilities based on the 1000 Monte
Carlo replicates for the four estimators, with different
sample sizes. From these plots it can be seen that the
cLIDA and WCHmethods are unbiased estimators and
confirm the less variability of the Aalen-Johansen es-
timator. The WCH method (which in this case is equiv-
alent to the LM method) is the preferred since is the
unbiased method reporting less variability.

Tables 4, 5 and 6 report the results for five differ-
ent estimators for the transition probability p22(s, t).
Results reported in Table 4 reveal that the Aalen-
Johansen estimator is the preferred since it reports un-
biased estimates with smaller variance in estimation.
This was expected since the process is Markovian in
this scenario. Again, it is important mentioning that
this estimator which assumes the process to be Marko-
vian still perform reasonably well in situations where

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.36 Gustavo Soutinho, Luis Meira-Machado

E-ISSN: 2224-2880 358 Volume 19, 2020



Ta
bl

e
1:

B
ia

s
an

d
st

an
da

rd
de

vi
at

io
n

(S
D

)f
or

th
e

th
re

e
es

tim
at

or
s

of
p
1
3
(s
,t

).
M

ar
ko

v
sc

en
ar

io
w

ith
tw

o
sa

m
pl

e
si

ze
s

an
d

tw
o

ce
ns

or
in

g
le

ve
ls

.
p̂
A
J

1
3
(s

,
t)

p̂
L
I
D
A

1
3

(s
,
t)

p̂
c
L
I
D
A

1
3

(s
,
t)

p̂
W
C
H

1
3

(s
,
t)

bi
as

SD
bi

as
SD

bi
as

SD
bi

as
SD

(s
,t)

=
(2

,4
)

n=
10

0
C
∼

U
[0
,
3
0
]

<
0.

00
01

00
29

9
0.

03
45

0.
05

33
<

0.
00

01
0.

03
16

<
0.

00
01

0.
03

16
C
∼

U
[0
,
2
0
]

<
0.

00
01

0.
03

00
0.

06
00

0.
05

52
<

0.
00

01
0.

03
12

<
0.

00
01

0.
03

11
n=

25
0

C
∼

U
[0
,
3
0
]

<
0.

00
01

0.
01

87
0.

03
35

0.
03

68
<

0.
00

01
0.

01
97

<
0.

00
01

0.
01

97
C
∼

U
[0
,
2
0
]

<
0.

00
01

0.
01

93
0.

05
84

0.
03

83
<

0.
00

01
0.

02
04

<
0.

00
01

0.
02

04
(s

,t)
=

(2
,8

)
n=

10
0

C
∼

U
[0
,
3
0
]

0.
00

24
0.

05
27

0.
06

59
0.

09
26

0.
00

21
0.

05
67

0.
00

25
0.

05
63

C
∼

U
[0
,
2
0
]

0.
00

14
0.

05
94

0.
11

8
0.

09
07

0.
00

10
0.

06
30

<
0.

00
01

0.
06

27
n=

25
0

C
∼

U
[0
,
3
0
]

<
0.

00
01

0.
03

40
0.

06
77

0.
06

26
<

0.
00

01
0.

03
63

<
0.

00
01

0.
03

6
C
∼

U
[0
,
2
0
]

<
0.

00
01

0.
03

75
0.

11
47

0.
06

07
<

0.
00

01
0.

04
06

<
0.

00
01

0.
04

01
(s

,t)
=

(4
,1

2)
n=

10
0

C
∼

U
[0
,
3
0
]

-0
.0

03
9

0.
07

36
0.

06
69

0.
10

34
-0

.0
02

9
0.

07
91

-0
.0

03
8

0.
07

67
C
∼

U
[0
,
2
0
]

-0
.0

02
4

0.
08

24
0.

10
84

0.
11

81
-0

.0
01

3
0.

09
11

-0
.0

01
4

0.
08

93
n=

25
0

C
∼

U
[0
,
3
0
]

0.
00

11
0.

04
62

0.
06

71
0.

07
33

0.
00

18
0.

05
08

0.
00

17
0.

04
96

C
∼

U
[0
,
2
0
]

<
0.

00
01

0.
05

03
0.

11
32

0.
07

08
<

0.
00

01
0.

05
41

<
0.

00
01

0.
05

33
(s

,t)
=

(8
,1

2)
n=

10
0

C
∼

U
[0
,
3
0
]

-0
.0

01
5

0.
08

16
0.

04
24

0.
10

3
-0

.0
03

1
0.

08
44

-0
.0

02
9

0.
08

39
C
∼

U
[0
,
2
0
]

-0
.0

01
9

0.
09

9
0.

06
45

0.
11

7
-0

.0
01

6
0.

10
34

-0
.0

02
7

0.
10

12
n=

25
0

C
∼

U
[0
,
3
0
]

<
0.

00
01

0.
05

29
0.

04
12

0.
06

58
<

0.
00

01
0.

05
51

<
0.

00
01

0.
05

46
C
∼

U
[0
,
2
0
]

<
0.

00
01

0.
06

21
0.

06
15

0.
07

85
<

0.
00

01
0.

06
52

<
0.

00
01

.
0.

06
39

Ta
bl

e
2:

B
ia

s
an

d
st

an
da

rd
de

vi
at

io
n

(S
D

)f
or

th
e

th
re

e
es

tim
at

or
s

of
p
1
3
(s
,t

).
Se

m
i-

M
ar

ko
v

sc
en

ar
io

w
ith

tw
o

sa
m

pl
e

si
ze

s
an

d
tw

o
ce

ns
or

in
g

le
ve

ls
.

p̂
A
J

1
3
(s

,
t)

p̂
L
I
D
A

1
3

(s
,
t)

p̂
c
L
I
D
A

1
3

(s
,
t)

p̂
W
C
H

1
3

(s
,
t)

bi
as

SD
bi

as
SD

bi
as

SD
bi

as
SD

(s
,t)

=
(2

,4
)

n=
10

0
C
∼

U
[0
,
3
0
]

0.
00

85
0.

03
12

0.
01

81
0.

04
88

0.
00

15
0.

03
23

0.
00

16
0.

03
23

C
∼

U
[0
,
2
0
]

0.
00

57
0.

03
11

0.
03

33
0.

05
34

<
0.

00
01

0.
03

31
<

0.
00

01
0.

03
31

n=
25

0
C
∼

U
[0
,
3
0
]

0.
00

71
0.

01
97

0.
01

58
0.

03
37

<
0.

00
01

0.
02

02
<

0.
00

01
0.

02
02

C
∼

U
[0
,
2
0
]

0.
00

65
0.

02
01

0.
03

33
0.

03
78

<
0.

00
01

0.
02

08
<

0.
00

01
0.

02
08

(s
,t)

=
(2

,8
)

n=
10

0
C
∼

U
[0
,
3
0
]

0.
02

73
0.

05
79

0.
04

98
0.

08
7

0.
00

14
0.

06
17

0.
00

14
0.

06
10

C
∼

U
[0
,
2
0
]

0.
02

54
0.

05
96

0.
08

63
0.

09
32

<
0.

00
01

0.
06

39
<

0.
00

01
0.

06
34

n=
25

0
C
∼

U
[0
,
3
0
]

0.
02

76
0.

03
53

0.
04

74
0.

05
90

0.
00

19
0.

03
69

0.
00

22
0.

03
70

C
∼

U
[0
,
2
0
]

0.
02

57
0.

03
54

0.
08

40
0.

06
29

<
0.

00
01

0.
03

83
<

0.
00

01
0.

03
78

(s
,t)

=
(4

,1
2)

n=
10

0
C
∼

U
[0
,
3
0
]

0.
03

28
0.

07
57

0.
07

61
0.

10
59

0.
00

35
0.

07
98

0.
00

35
0.

07
83

C
∼

U
[0
,
2
0
]

0.
03

08
0.

08
41

0.
11

93
0.

10
79

0,
00

28
0.

09
02

0.
00

22
0.

08
83

n=
25

0
C
∼

U
[0
,
3
0
]

0.
02

70
0.

04
59

0.
06

72
0.

07
27

-0
.0

02
4

0.
04

98
-0

.0
02

4
0.

04
86

C
∼

U
[0
,
2
0
]

0.
02

71
0.

05
30

0.
11

06
0.

07
44

-0
.0

02
7

0.
05

73
-0

.0
02

0
0.

05
62

(s
,t)

=
(8

,1
2)

n=
10

0
C
∼

U
[0
,
3
0
]

0.
00

85
0.

08
42

0.
05

05
0.

10
56

<
0.

00
01

0.
08

72
-0

.0
01

2
0.

08
61

C
∼

U
[0
,
2
0
]

0.
00

77
0.

09
87

0.
07

38
0.

12
16

0.
00

13
0.

10
40

-0
.0

01
3

0.
10

04
n=

25
0

C
∼

U
[0
,
3
0
]

0.
00

95
0.

05
30

0.
05

08
0.

06
73

<
0.

00
01

0.
05

50
<

0.
00

01
0.

05
42

C
∼

U
[0
,
2
0
]

0.
00

85
0.

05
96

0.
07

20
0.

07
50

-0
.0

01
0

0.
06

20
-0

.0
01

1
0.

06
08

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.36 Gustavo Soutinho, Luis Meira-Machado

E-ISSN: 2224-2880 359 Volume 19, 2020



Ta
bl

e
3:

B
ia

s
an

d
st

an
da

rd
de

vi
at

io
n

(S
D

)f
or

th
e

th
re

e
es

tim
at

or
s

of
p
1
3
(s
,t

).
N

on
-M

ar
ko

v
sc

en
ar

io
w

ith
th

re
e

sa
m

pl
e

si
ze

s
an

d
tw

o
ce

ns
or

in
g

le
ve

ls
.

p̂
A
J

1
3
(s

,
t)

p̂
L
I
D
A

1
3

(s
,
t)

p̂
c
L
I
D
A

1
3

(s
,
t)

p̂
W
C
H

1
3

(s
,
t)

bi
as

SD
bi

as
SD

bi
as

SD
bi

as
SD

(s
,t)

=
(2

,4
)

n=
10

0
C
∼

U
[0
,
3
0
]

0.
00

18
0.

02
82

0.
01

47
0.

04
88

-0
.0

01
9

0.
02

86
-0

.0
01

9
0.

02
85

C
∼

U
[0
,
2
0
]

0.
00

35
0.

03
18

0.
03

76
0.

05
63

<
0.

00
01

0.
03

25
<

0.
00

01
0.

03
25

n=
25

0
C
∼

U
[0
,
3
0
]

0.
00

34
0.

01
85

0.
01

23
0.

03
45

<
0.

00
01

0.
01

88
<

0.
00

01
0.

01
88

C
∼

U
[0
,
2
0
]

0.
00

30
0.

01
91

0.
03

09
0.

04
13

<
0.

00
01

0.
01

94
<

0.
00

01
0.

01
94

(s
,t)

=
(2

,8
)

n=
10

0
C
∼

U
[0
,
3
0
]

0.
01

31
0.

05
63

0.
02

52
0.

09
36

-0
.0

01
7

0.
05

88
-0

.0
01

4
0.

05
86

C
∼

U
[0
,
2
0
]

0.
01

19
0.

05
67

0.
07

92
0.

09
25

<
0.

00
01

0.
06

03
<

0.
00

01
0.

05
96

n=
25

0
C
∼

U
[0
,
3
0
]

0.
01

64
0.

03
49

0.
02

57
0.

05
84

0.
00

27
0.

03
67

0.
00

28
0.

03
64

C
∼

U
[0
,
2
0
]

0.
01

40
0.

03
65

0.
06

86
0.

07
11

<
0.

00
01

0.
03

92
<

0.
00

01
0.

03
90

(s
,t)

=
(4

,1
2)

n=
10

0
C
∼

U
[0
,
3
0
]

0.
01

76
0.

07
49

0.
03

16
0.

11
03

<
0.

00
01

0.
08

01
-0

.0
01

5
0.

07
86

C
∼

U
[0
,
2
0
]

0.
02

12
0.

08
32

0.
09

00
0.

11
97

0.
00

45
0.

09
06

0.
00

34
0.

08
69

n=
25

0
C
∼

U
[0
,
3
0
]

0.
02

04
0.

04
68

0.
02

40
0.

07
83

<
0.

00
01

0.
05

06
<

0.
00

01
0.

04
98

C
∼

U
[0
,
2
0
]

0.
01

79
0.

05
27

0.
08

15
0.

08
41

-0
.0

01
7

0.
05

83
-0

.0
01

5
0.

05
67

(s
,t)

=
(8

,1
2)

n=
10

0
C
∼

U
[0
,
3
0
]

0.
01

45
0.

08
14

0.
02

59
0.

10
77

0.
00

39
0.

08
42

0.
00

38
0.

08
35

C
∼

U
[0
,
2
0
]

0.
00

60
0.

10
05

0.
06

10
0.

12
46

-0
.0

03
8

0.
10

32
-0

.0
03

4
0.

10
31

n=
25

0
C
∼

U
[0
,
3
0
]

0.
00

87
0.

05
27

0.
01

89
0.

07
09

<
0.

00
01

0.
05

41
<

0.
00

01
0.

05
39

C
∼

U
[0
,
2
0
]

0.
01

14
0.

06
19

0.
05

96
0.

08
15

0.
00

16
0.

06
45

0.
00

17
0,

06
36

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●
●
●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

AJ LIDA cLIDA WCH AJ LIDA cLIDA WCH

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

p1
2(

2,
12

)

n = 100 n = 250

Figure 2: Boxplots of the M = 1000 estimates of
the transition probabilities of the p̂AJ12 , p̂LIDA12 , p̂cLIDA12

and p̂WCH12 with two different samples sizes for semi-
Markovian scenario. Censoring times were generated
from an uniform distribution on [0, 30].

the process shows only mild deviations from Marko-
vianity. This occurs for example in the semi-Markov
scenario with small lag times t − s. In these cases,
the Aalen-Johansen reports estimates with small bias
but less variability and therefore low mean squared
errors. As the lag times t − s increase so the bias
resulting in a clear biased estimator. This behavior
is also present in the non-Markov scenario (Table 6).
Results shown in Tables 5 and 6 reveals that when
there is strong evidence that the process is not Markov
that the use of a non-Markov estimator is preferable.
With the exception of the LIDA method all the re-
maining non-Markov methods (cLIDA, LM and WCH)
are valid alternative estimators due to their greater ac-
curacy. Again, the performance of the LIDA method
is poorer even worst than the Aalen-Johansen estima-
tor. Simulation results reveal that the LIDA estima-
tor is systematically (downward) biased whereas the
three non-Markov methods cLIDA, LM and WCH are
asymptotically unbiased. The best performance is at-
tained by the non-Markov methods (cLIDA, LM and
WCH) which lead to more efficient estimation of the
transition probabilities. This can be seen in all mea-
sures (bias, standard deviation and mean square er-
ror). However, when considering all scenarios and
all pairs (s, t) neither of the two methods seems to
be uniformly best for estimating p22(s, t). However,
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the landmark method LM reveals in most cases less
variability and therefore better results (with less mean
square errors) than the remaining non-Markov estima-
tors.

For completeness purposes we show in Figures 3,
4 and 5 the boxplots of the estimates of the transi-
tion probability p22(s, t) based on 1000 Monte Carlo
replicates for the five estimators, with different sam-
ple sizes. The boxplots shown in these figures are
in agree with our findings reported in Table 4, 5 and
6. From these plots it can be seen that the LIDA es-
timator of p23(s, t) is systematically (downward) bi-
ased and that the AJ estimator may also lead to biased
estimates (but with less variability) under deviations
from Markovianity. Under a Markov scenario (Fig-
ure 3), all estimators but the LIDA estimator revealed
to be unbiased and with a variance that decrease with
the sample size. The AJ estimator is preferable in
this case because it provides less variability. When
the multi-state model is not Markov, this is no longer
the case. Despite of offering a small variability, the
bias associated to Aalen-Johansen estimator in non-
Markov scenarios (Figures 4 and 5) makes this ap-
proach unappropriated. The methods labeled as LM
and WCH are recommended in these cases.
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Figure 3: Boxplots of the M = 1000 estimates of the
transition probabilities of the p̂AJ22 , p̂LIDA22 , p̂cLIDA22 , p̂LM22
and p̂WCH22 with two different samples sizes for Marko-
vian scenario. Censoring times were generated from
an uniform distribution on [0, 30]. Ta
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Figure 4: Boxplots of the M = 1000 estimates of the
transition probabilities of the p̂AJ22 , p̂LIDA22 , p̂cLIDA22 , p̂LM22
and p̂WCH22 with two different samples sizes for semi-
Markovian scenario. Censoring times were generated
from an uniform distribution on [0, 30].
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Figure 5: Boxplots of the M = 1000 estimates of the
transition probabilities of the p̂AJ22 , p̂LIDA22 , p̂cLIDA22 , p̂LM22
and p̂WCH22 with two different samples sizes for non-
Markovian scenario. Censoring times were generated
from an uniform distribution on [0, 30].

4 Example of Application

Colorectal cancer is one of the most commonly di-
agnosed cancers worldwide. It is also the one of
most frequent causes of cancer-related death in both
men and women. Several lifestyle-related factors have
been linked to colorectal cancer including diet, weight
and exercise. Survival rates for colorectal cancer vary
worldwide but they have been associated to several
clinical and pathological factors including age, tumor
size, lymph nodes with detectable cancer, etc.

Surgical resection is the best treatment option for
patients with colorectal cancer and the most powerful
tool for assessing prognosis following potentially cu-
rative surgery. In a large percentage of the patients
with colorectal cancer, the diagnosis is made at a suf-
ficiently early stage when all apparent disease tissue
can be surgically removed. Unfortunately, some of
these patients have residual cancer, which leads to
recurrence of the disease and death (in some cases).
Cancer patients who have experienced a recurrence
are known to be at a substantially higher risk of mor-
tality. This mortality is higher in cases of early re-
currences. Traditionally, the effect of these covariates
is studied using the Cox proportional hazards model
[22] with time-dependent covariates. The analysis of
such studies can also be successfully performed using
a multi-state model [3, 8].

In this section we re-analyzed data from one of
the first successful trials of adjuvant chemotherapy for
colon cancer [23]. In this data set we have a total of
929 patients from a large clinical trial on Duke’s stage
III patients, affected by colon cancer, that underwent
a curative surgery for colorectal cancer. In this study,
patients were followed from the date of cancer diag-
nosis until censoring or death. A total of 468 patients
developed a recurrence and among these 414 died; 38
patients died without recurrence. The rest of the pa-
tients (423) remained alive and disease-free up to the
end of the follow-up. Cancer recurrence affects the
patient’s outcome and can be included as a transient
state in a progressive illness-death model with states
“alive and disease-free” (State 1), “alive with recur-
rence” (State 2) and “death” (State 3).

Besides recurrence, the sojourn time in State 1,
the total time of the process and the corresponding in-
dicator statuses are known for each individual. Ad-
ditional covariates such as age, sex, tumor size and
lymph nodes with detectable cancer, are also avail-
able. In this paper we consider early recurrence as
recurrence within 1 year after primary surgery of col-
orectal cancer. Considering overall survival after re-
currence, the median survival time in the early recur-
rence group was 498 days with overall survival rates
of 26.6%, 10.8% and 6.3% for 2, 3 and 5 years after
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surgery. As expected, better results (P-value < 0.001)
were obtained for patients in the late recurrence group
(i.e., with a time to recurrence greater than 1 year after
surgery). The median survival time in this group was
1292 days with overall survival rates of 86.7%, 65.4%
and 31.3% for 2, 3 and 5 years after surgery. These
results confirm that recurrence has a negative impact
in the prognosis.

Statistical methods for analyzing data in an
illness-death multi-state model depend on the Markov
assumption, which states that past and future are in-
dependent given the present state. By ignoring the
disease history behavior (e.g., states previously vis-
ited and the transition times among them), these mod-
els may carry severe limitations which can make the
model inappropriate. It is a fact that the future health
of individuals with an early recurrence may be dif-
ferent from those who have been healthy for a long
time. In addition, the risk of death is known to in-
crease shortly after the recurrence, which reveals that
the length of stay in the recurrence state is relevant for
prognosis, thus invalidating the memoryless property
of Markov processes. Accordingly, the Markov as-
sumption can be checked by including covariates de-
pending on the history. This ‘global’ test for Marko-
vianity based on the Cox model (using time to recur-
rence as a covariate) reported a coefficient of negative
sign for the recurrence time, according to an increased
risk of death shortly after relapse (P-value = 0.154).

Since several estimators introduced in this paper
are consistent regardless the Markov condition they
can be used to introduce a ‘local’ test for the Markov
condition by measuring the discrepancy in the esti-
mates obtained from these estimators to those ob-
tained using the Aalen-Johansen estimators (only con-
sistent if the process is Markov). Graphical com-
parisons of the transition probabilities between the
two approaches are reported in Figure 6. This figure
depicts the discrepancy between the landmark non-
Markovian estimator (LM) and the Aalen-Johansen
estimator (Markovian), for p12(s, t) and p22(s, t), for
s = 365, s = 730 and s = 1095 (Dij = pLMij (s, t) −
pAJij (s, t)). The 95% pointwise confidence bands are
based on simple bootstrap are also shown, revealing
clear differences between the two methods in large
intervals for s = 365. In this case, since there ex-
ists a deviation of the plot with respect to the straight
line y = 0, one gets some evidence on the lack of
Markovianity of the underlying process beyond one
year after surgery. On the other hand, the plots de-
picted on the second and third row no not reveal ev-
idence against the Markov assumption. In summary,
these plots reveal some evidence, at least for s = 365,
that the use of Markov-free estimators such as those

proposed in this paper are more suited to estimate the
transition probabilities p12(s, t), p13(s, t), p22(s, t)
and p23(s, t).
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Figure 6: Local graphical test for the Markov con-
dition, for s = 365 (top), s = 730 (middle) and
s = 1095 (bottom). Test based on the discrepancy be-
tween the Aalen-Johansen estimator (Markovian) and
the Markov-free estimator (LM). Colon cancer data.

With this application we are also interested in il-
lustrating differences between the estimated transition
probabilities from the estimators introduced in Sec-
tion 2. These quantities can be used to obtain pre-
diction probabilities of future events (e.g., recurrence
and death in cancer studies). In Figure 7 we present,
as an example, estimated transition probabilities for
p12(s, t) and p22(s, t), with s = 365, s = 730 and
s = 1095 (corresponding to 1, 2 and 3 years) for the
colon cancer data, showing that a choice between the
different methods makes a big difference. As shown in
our simulations the estimators by [14] provide curves
that are almost always below those obtained by the
new estimators. This is more clear in the transition
probability p22(s, t) for higher values of s. This is in
agreement with our simulation results that suggested a
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systematic negative bias for the estimator by [14] (i.e.
a downward biased estimator).
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Figure 7: Estimated transition probabilities for
p12(s, t) and p22(s, t), s = 365 (top), s = 730 (mid-
dle) and s = 1095 (bottom). Colon cancer data.

Since few events (‘death’) are observed at higher
time values, consistency problems are expected at the
right tail of the distribution when using the estima-
tor by [14]. These features can be seen in all plots
but especially in the figures of the transition probabil-
ity p22(s, t). While both LM and WCH estimators de-
crease smoothly with time the estimator by [14] shows
a sharp decrease to zero.

All plots depicted in right hand side of Figure 7
reveal a similar behavior of the LM and WCH estima-
tors of the transition probability p22(s, t). These plots
report the survival fraction along time, among the in-
dividuals in the recurrence state 1 year (Figure 7, top),
and 2 years (Figure 7, middle) and 3 years (Figure 7,
bottom) after surgery. They reveal that patients with
an early recurrence have lower survival probabilities.
When comparing the two Markov-free methods with
the Aalen-Johansen estimator (AJ) one can observe
some differences for s = 365 which are less evident as
s increases. These discrepancies can be explained by

the failure of the Markov assumption as shown in Fig-
ure 6. Similarly, differences can also be observed be-
tween AJ and WCH estimators for the transition prob-
ability p12(s, t). Summarizing, it becomes clear from
this application that, at least for s = 365, the use of
Markov-free estimators such as LM and WCH are pre-
ferred over the Aalen-Johansen estimator.

5 Discussion

There has been a remarkable surge of activity lately
on the topic of nonparametric estimation of transi-
tion probabilities in multi-state models. Most recent
contributions on this topic are in the context of non-
Markov multi-state models since the Aalen-Johansen
estimator is still the preferred and standard estimator
when one is confident of the Markov assumption. One
recent paper has used the idea of subsampling to in-
troduce estimators that are consistent regardless the
Markov condition. In this paper we propose new es-
timators which are constructed using the cumulative
hazard of the total time given a first time but where
each observation has been weighted using the infor-
mation of the first duration. Results obtained from
several simulation studies conducted under different
data scenarios show that the new method and the pro-
posals introduced by [16] are quite similar providing
accurate estimates.

The comparison between estimated transition
probabilities is the basis to introduce a graphical lo-
cal test for the Markov assumption. The new meth-
ods are based on measuring the discrepancy of the
Aalen-Johansen estimator which gives consistent es-
timators in Markov processes, and recent approaches
that do not rely on this assumption. Our simulation re-
sults indicated that the Aalen-Johansen estimator pro-
vides biased estimates if the Markov assumption does
not hold. In most of these cases the use of a non-
Markov estimator is preferable due to their greater ac-
curacy. Therefore, one important issue is how to test
the Markov assumption. Results reported in our data
illustration reveal that the use of a local graphical test
can lead to more reliable conclusions than those ob-
tained by a global test such as the one studying Marko-
vianity through covariates depending on history.
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